Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

Identifieur interne : 002F81 ( Main/Exploration ); précédent : 002F80; suivant : 002F82

Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

Auteurs : Andrea Ghirardo [Allemagne] ; Jessica Gutknecht ; Ina Zimmer ; Nicolas Brüggemann ; Jörg-Peter Schnitzler

Source :

RBID : pubmed:21387007

Descripteurs français

English descriptors

Abstract

BACKGROUND

Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.

METHODOLOGY

We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission.

PRINCIPAL FINDING

In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%).

CONCLUSION

We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.


DOI: 10.1371/journal.pone.0017393
PubMed: 21387007
PubMed Central: PMC3046154


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.</title>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen</wicri:regionArea>
<wicri:noRegion>Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>Garmisch-Partenkirchen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gutknecht, Jessica" sort="Gutknecht, Jessica" uniqKey="Gutknecht J" first="Jessica" last="Gutknecht">Jessica Gutknecht</name>
</author>
<author>
<name sortKey="Zimmer, Ina" sort="Zimmer, Ina" uniqKey="Zimmer I" first="Ina" last="Zimmer">Ina Zimmer</name>
</author>
<author>
<name sortKey="Bruggemann, Nicolas" sort="Bruggemann, Nicolas" uniqKey="Bruggemann N" first="Nicolas" last="Brüggemann">Nicolas Brüggemann</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21387007</idno>
<idno type="pmid">21387007</idno>
<idno type="doi">10.1371/journal.pone.0017393</idno>
<idno type="pmc">PMC3046154</idno>
<idno type="wicri:Area/Main/Corpus">002E90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E90</idno>
<idno type="wicri:Area/Main/Curation">002E90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E90</idno>
<idno type="wicri:Area/Main/Exploration">002E90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.</title>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen</wicri:regionArea>
<wicri:noRegion>Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>Garmisch-Partenkirchen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gutknecht, Jessica" sort="Gutknecht, Jessica" uniqKey="Gutknecht J" first="Jessica" last="Gutknecht">Jessica Gutknecht</name>
</author>
<author>
<name sortKey="Zimmer, Ina" sort="Zimmer, Ina" uniqKey="Zimmer I" first="Ina" last="Zimmer">Ina Zimmer</name>
</author>
<author>
<name sortKey="Bruggemann, Nicolas" sort="Bruggemann, Nicolas" uniqKey="Bruggemann N" first="Nicolas" last="Brüggemann">Nicolas Brüggemann</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Biological Transport (physiology)</term>
<term>Carbon (pharmacokinetics)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Isotopes (pharmacokinetics)</term>
<term>Cell Respiration (physiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Online Systems (instrumentation)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Shoots (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Staining and Labeling (instrumentation)</term>
<term>Staining and Labeling (methods)</term>
<term>Volatile Organic Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Carbone (pharmacocinétique)</term>
<term>Coloration et marquage (instrumentation)</term>
<term>Coloration et marquage (méthodes)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Isotopes du carbone (pharmacocinétique)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Plantes (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Respiration cellulaire (physiologie)</term>
<term>Systèmes en direct (instrumentation)</term>
<term>Transport biologique (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Carbon</term>
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Online Systems</term>
<term>Staining and Labeling</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Shoots</term>
<term>Plants</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Staining and Labeling</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Coloration et marquage</term>
<term>Composés organiques volatils</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Plantes</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Systèmes en direct</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Coloration et marquage</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Carbone</term>
<term>Isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Respiration cellulaire</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Biological Transport</term>
<term>Cell Respiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY</b>
</p>
<p>We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>PRINCIPAL FINDING</b>
</p>
<p>In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21387007</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.</ArticleTitle>
<Pagination>
<MedlinePgn>e17393</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0017393</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.</AbstractText>
<AbstractText Label="METHODOLOGY" NlmCategory="METHODS">We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission.</AbstractText>
<AbstractText Label="PRINCIPAL FINDING" NlmCategory="RESULTS">In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%).</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ghirardo</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Garmisch-Partenkirchen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gutknecht</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zimmer</LastName>
<ForeName>Ina</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brüggemann</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnitzler</LastName>
<ForeName>Jörg-Peter</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009862" MajorTopicYN="N">Online Systems</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013194" MajorTopicYN="N">Staining and Labeling</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21387007</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0017393</ArticleId>
<ArticleId IdType="pmc">PMC3046154</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2001;15(7):501-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11268135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 May;32(5):542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):302-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Nov;6(6):730-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15570479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 May;127(3):305-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Aug;108(4):1359-1368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Jan;142(1):70-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(5):593-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:73-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Sep 16;241(4872):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3420404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Oct;21(10):548-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(2):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19496953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(2):244-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Apr 1;78(7):2439-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16579631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Aug;152(5):461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1126-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bruggemann, Nicolas" sort="Bruggemann, Nicolas" uniqKey="Bruggemann N" first="Nicolas" last="Brüggemann">Nicolas Brüggemann</name>
<name sortKey="Gutknecht, Jessica" sort="Gutknecht, Jessica" uniqKey="Gutknecht J" first="Jessica" last="Gutknecht">Jessica Gutknecht</name>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<name sortKey="Zimmer, Ina" sort="Zimmer, Ina" uniqKey="Zimmer I" first="Ina" last="Zimmer">Ina Zimmer</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21387007
   |texte=   Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21387007" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020